Disminución del impacto ambiental en el control del parásito Haemonchus contortus en ovinos
Sinopsis
Las parasitosis por nematodos gastrointestinales (NGI) constituyen el problema más generalizado y desafiante para la industria de los pequeños rumiantes en todo el mundo (Torres-Acosta, Molento, & De Gives, 2012). De los NGI que parasitan a los ovinos y caprinos y que posee una distribución mundial, es sin dudas H. contortus el más importante. Los animales infectados padecen anemia, edema, diarrea, debilidad, emaciación e incluso la muerte, especialmente cuando se trata de animales jóvenes (Taylor, Coop, & Wall, 2007b).
En Cuba H. contortus constituye el parásito de mayor prevalencia e incidencia, que limita seriamente el desarrollo de la ganadería ovina (Arece & López, 2013). Estudios en el país muestran un 73,8 % de prevalencia en la provincia Las Tunas (Medina, 2019).
- contortus tiene un ciclo de vida directo, sin ningún hospedero intermediario. Los huevos morulados son ovopositados por las hembras del parásito para luego ser expelidos al medio ambiente a través de las heces. Cada hembra del nematodo puede llegar a expulsar más de 5000 huevos por día, lo que hace que aumente vertiginosamente la cantidad de larvas en el medio y se conviertan en una seria amenaza para la salud de los animales.
De la eclosión de los huevos resulta el primer estadio larval (L1) con mudas sucesivas hasta llegar a la fase infectante (L3) en un periodo de siete días bajo condiciones favorables. Las L3 son extremadamente resistentes a los ambientes hostiles ya que poseen una cubierta protectora. Los animales se infectan a través del alimento o el agua contaminada con las L3 (Lee, 2002).
Dos de las características que distinguen al H. contortus son su alta prevalencia en la mayoría de las regiones del mundo y su elevada capacidad para desarrollar resistencia a múltiples medicamentos usados en su tratamiento. Es por ello que un diagnóstico certero tiene importantes implicaciones para el estudio de su biología, epidemiología, estrategias de control y resistencia a los medicamentos (Yang et al., 2017).
El fenómeno de resistencia a múltiples drogas químicas por parte de H. contortus requiere del desarrollo de estrategias de lucha, encaminadas a descubrir nuevos medicamentos antihelmínticos y candidatos vacunales capaces de proteger a los animales contra la infestación del nematodo, basados en estudios que identifiquen moléculas claves para sus procesos de desarrollo y reproducción.
Para C Britton, Roberts, and Marks (2016) es imprescindible el conocimiento profundo de los procesos biológicos a nivel molecular del H. contortus, que permitan llegar a identificar algunas de estas moléculas claves como nuevos objetivos farmacológicos. Es por ello que se necesita con urgencia estudios inmunológicos contra las infecciones por nematodos del ganado. Después de la vacunación con extractos de proteínas nativas se logra una protección significativa contra H. contortus, lo que demuestra que la búsqueda de vacunas es factible (Mohandas et al., 2016).
Aparejado al problema de resistencia a las drogas químicas, existe una tendencia hacia la disminución de los residuos de fármacos en los alimentos destinados al hombre y en el medio ambiente, lo cual supone que las estrategias de control antiparasitarias no dependan exclusivamente de los productos químicos. Entre las estrategias propuestas se encuentran el desarrollo de vacunas específicas contra los nematodos gastrointestinales y el empleo de animales genotípicamente resistentes a las infecciones parasitarias (Alba-Hurtado & Muñoz-Guzmán, 2012).
Hasta la fecha, se emplean varios antígenos nativos y recombinantes en ensayos de inmunización contra H. contortus, con una protección variable en la mayoría de los casos (Meier, Torgerson, & Hertzberg, 2016). De igual manera, también se prueban diferentes estrategias de vacunación, que incluyen el empleo de vacunas de ADN (Han, Xu, Yan, Song, & Li, 2012) y de variados adyuvantes (Piedrafita et al., 2013).
Si se tiene en cuenta las funciones esenciales que poseen algunas proteasas en la nutrición y la supervivencia de los helmintos en el huésped, estas se consideran candidatas para el desarrollo de vacunas contra este grupo de parásitos. Las cisteína-proteasas, que se describen en la mayoría de los helmintos parásitos, se proponen como una fuente alternativa de antígenos (Toet, Piedrafita, & Spithill, 2014).
En el caso particular de H. contortus, las cisteína-proteasas también se usan como inmunógenos contra el nematodo en diferentes ensayos de vacunación con el uso de formas nativas o recombinantes en cabras y ovejas (Muleke et al., 2007). Tal es así que la inmunización con fracciones enriquecidas con tiol proteinasa obtenidas del H. contortus adulto o sus productos de excreción-secreción (E/S) inducen una importante protección contra el parásito. Sin embargo, los mecanismos inmunológicos subyacentes a la protección son poco conocidos (J. M. Molina et al., 2018).
La identificación de epítopos es esencial para el diagnóstico, la inmunoterapia, el descubrimiento de fármacos y el desarrollo de vacunas para el tratamiento de enfermedades (Pande, Szewczyk, & Grover, 2010). Las bibliotecas de presentación de fagos constituyen un método rápido y de bajo costo para mapear epítopos de un antígeno que esté involucrado en una interacción de proteína específica con el anticuerpo y son consideradas una herramienta potente que permite la selección de mimotopos de péptidos que imitan epítopos naturales de un patógeno, incluso sin conocimiento previo del área del ligando natural (Ellis, Newlands, Nisbet, & Matthews, 2012).
El ARN de interferencia (ARNi) es una herramienta genética atractiva que permite la validación de objetivos farmacológicos y la identificación de genes diana en parásitos de interés veterinario. Los problemas con su sensibilidad variable a los enfoques estándar de ARNi reducen el desarrollo de plataformas de silenciamiento de genes (Maule et al., 2011).
El silenciamiento de genes puede desencadenarse mediante la introducción del ARN de doble cadena (ARNdc) en un organismo.
El procesamiento posterior de la doble cadena y la incorporación dentro del complejo de silenciamiento conduce a la división del ARN mensajero específico del gen (ARNm) que comparte la secuencia homóloga con el ARNdc (Filipowicz, 2005). El fenotipo resultante de los niveles de transcripción reducidos después de la introducción del ARNi puede sugerir o indicar la(s) función(es) del gen específico y su importancia para el organismo huésped y, además, puede informar sobre su potencial como un nuevo objetivo de intervención (Marr, Sargison, Nisbet, & Burgess, 2014).
En el silenciamiento de genes en H. contortus se emplean genes vitales del parásito, entre ellas, H11 (Samarasinghe, Knox, & Britton, 2011) responsable en la absorción de nutrientes, sec-23 (Geldhof, Murray, et al., 2006) con función en el transporte de vesículas y β-tubulina (A. C. Kotze & Bagnall, 2006) que forma los microtúbulos que con los microfilamentos de actina constituyen el citoesqueleto y es responsable del movimiento de los músculos (Cooper, 2000). Sin embargo, son pocos los estudios con éxito de silenciamiento de genes en H. contortus (Zawadzki, Presidente, Meeusen, & De Veer, 2006).
Con este antecedente se plantea el siguiente problema científico: ¿Puede reducirse la infestación de H. contortus en ovinos a través de la inmunización con epítopos de proteínas vitales provenientes de una biblioteca de fagos presentadora de péptidos?
En base a esto se busca demostrar la disminución de H. contortus en ovinos inmunizados con péptidos mimotopos de proteínas vitales del nematodo que participan en la respuesta inmune natural contra el parásito. En este sentido se proyectan diferentes experimentos como: identificar epítopos de proteínas de H. contortus involucradas en la respuesta inmune a través de una biblioteca de fagos presentadora de péptidos; optimizar el silenciamiento de genes en H. contortus con el empleo del gen de la β-tubulina, evaluar el efecto sobre la motilidad y el desarrollo larval del silenciamiento en H. contortus de los genes de β-tubulina y DIM 1; y determinar la reducción de la carga de H. contortus en ovinos con el empleo de un péptido que mimifique epítopos del parásito.
De la misma manera, este pesquisaje en la biblioteca de fagos constituye:
- El primer informe de empleo de esta herramienta en la identificación de proteínas involucradas en la respuesta inmune contra Haemonchus en ovinos.
- La optimización del silenciamiento de genes en Haemonchus representa el primer estudio de esta naturaleza.
- Es el primer informe de selección y silenciamiento de un gen novel (DIM 1) que sea vital para Haemonchus
La compilación de este libro se divide en 4 capítulos, 2 de los cuales son introductorios, el tercero da a conocer sobre la obtención de las muestras y procesamiento, además de una identificación de mimotopos en una Biblioteca de fagos. El cuarto capítulo, indica en forma detallada los estudios de caso:
El CAPÍTULO 1, menciona aspectos de H. contortus, ciclo biológico, prevalencia, diagnóstico, control, afectaciones y pérdidas económicas e impacto ambiental de los desparasitantes.
En el CAPÍTULO 2, se trata sobre la resistencia parasitaria, desarrollo de vacunas, respuesta inmunológica del hospedero, bibliotecas de fago para el control de parásitos, silenciamiento de genes en parásitos.
El CAPÍTULO 3, explica el ensayo inmunoenzimático (elisa), obtención de huevos de H. contortus, conteo de huevos por gramo de heces – técnica de mcmaster, coprocultivos estériles, selección y preparación de un animal donante de huevos, obtención de las l1 para el experimento de inmunoneutralización, obtención de las L3 para los experimentos de silenciamiento, así mismo se presenta la identificación de mimotopos similares a H. contortus a través de una biblioteca de fagos.
Los estudios de caso se abordan en el CAPÍTULO 4: donde se realiza la optimización de transferencia de genes en h. contortus para el silenciamiento de genes vitales y la evaluación de un péptido con epítopos de gliceraldehído 3-fosfato deshidrogenasa (gapdh) y de desorganización muscular (dim 1) en la protección de ovinos contra H. contortus.
Descargas
Citas
Acero-Camelo, A., Valencia, E., Rodríguez, A. A., & Randel, P. F. (2009). FAMACHA© as a tool to detect anemia in meat goats in Puerto Rico. The Journal of Agriculture of the University of Puerto Rico, 93(1-2), 61-68.
Acosta García, G. S. (2022). Tratamientos homeopáticos como alternativa para el control de parásitos Gastrointestinales en bovinos. BABAHOYO: UTB, 2022.
Adhikari, K., Rana, H. B., Kaphle, K., Khanal, T., & Raut, R. (2017). Prevalence of Haemonchus contortus in Goats of Western Chitwan of Nepal. International Journal of Applied Sciences and Biotechnology, 5(3), 321-325.
Agriculture, G. B. M. o. (1986). Manual of veterinary parasitological laboratory techniques (Vol. 418): HM Stationery Office.
Akinkuotu, O., Akinkuotu, A., & Oseni, O. (2016). Prevalence of cryptosporidium infection in a rabbitory in Abeokuta, Nigeria. Nigerian Veterinary Journal, 37(4), 243-246.
Al-Jbory, W. A. H., & Al-Samarai, F. R. (2016). Validation of FAMACHA [C] system for detecting anemic sheep in some regions of Baghdad, Iraq. Advances in Environmental Biology, 10(5), 186-192.
Alba-Hurtado, F., & Muñoz-Guzmán, M. A. (2012). Immune responses associated with resistance to haemonchosis in sheep. BioMed research international, 2013.
Aleyasin, H., Karuppagounder, S. S., Kumar, A., Sleiman, S., Basso, M., Ma, T., . . . Langley, B. (2015). Antihelminthic benzimidazoles are novel HIF activators that prevent oxidative neuronal death via binding to tubulin. Antioxidants & redox signaling, 22(2), 121-134.
Almukadi, H. S., Hanada, T., & Chishti, A. H. (2017). Phage Display cDNA Screens Reveal a Specific Region of Plasmodium falciparum Glutamic Acid-rich Protein that Binds to Human Red Blood Cells. A Functional Role in Malaria Pathogenesis. The FASEB Journal, 31(1 Supplement), 1002.1004-1002.1004.
Amaradasa, B. S., Lane, R. A., & Manage, A. (2010). Vertical migration of Haemonchus contortus infective larvae on Cynodon dactylon and Paspalum notatum pastures in response to climatic conditions. Veterinary Parasitology, 170(1-2), 78-87.
Amarante, A. F. (2014). Sustainable worm control practices in South America. Small Ruminant Research, 118(1), 56-62.
Ambroggio X, Jiang L, Aebig J, Obiakor H, Lukszo J, Narum D. 2013. The epitope of monoclonal antibodies blocking erythrocyte invasion by Plasmodium falciparum map to the dimerization and receptor glycan binding sites of EBA-175. PloS One 8(2): e56326. doi: 10.1371/journal.pone.-0056326
Anandanarayanan, A., Raina, O. K., Lalrinkima, H., Rialch, A., Sankar, M., & Varghese, A. (2017). RNA interference in Fasciola gigantica: Establishing and optimization of experimental RNAi in the newly excysted juveniles of the fluke. PLoS neglected tropical diseases, 11(12), e0006109.
Arafa, W. M., Holman, P. J., & Craig, T. M. (2017). Genotypic and phenotypic evaluation for benzimidazole resistance or susceptibility in Haemonchus contortus isolates. Parasitology research, 116(2), 797-807.
Argandoña Pereda, R. I., & Cusi Fernández, E. (2020). Conocimiento sobre el empleo de Chenopodium ambrosoides (paico) en la parasitosis intestinal en pobladores del asentamiento humano “monitor huáscar” san juan de lurigancho-2019.
Arece-García, J., López-Leyva, Y., Olmedo-Juárez, A., Ramírez-Vargas, G., Reyes-Guerrero, D., Arellano, M. E. L., . . . González-Garduño, R. (2017). First report of multiple anthelmintic resistance in goat farm in Cuba. Helminthologia, 54(4), 358-362.
Arece, J., & López, Y. (2013). Validación del método FAMACHA© en la detección de anemia en ovejas Pelibuey en Cuba. Pastos y Forrajes, 36(4), 479-484.
Arece, J., Mahieu, M., Archimède, H., Aumont, G., Fernández, M., González, E., . . . Menéndez-Buxadera, A. (2004). Comparative efficacy of six anthelmintics for the control of gastrointestinal nematodes in sheep in Matanzas, Cuba. Small Ruminant Research, 54(1), 61-67.
Arnon, R., Tarrab‐Hazdai, R., & Steward, M. (2000). A mimotope peptide‐based vaccine against Schistosoma mansoni: synthesis and characterization. Immunology, 101(4), 555-562.
Arsenopoulos, K., Symeonidou, I., & Papadopoulos, E. (2017). Immune and other factors modulating host resistance against gastrointestinal nematode parasites in sheep. Journal of the Hellenic Veterinary Medical Society, 68(2), 131-144.
Assana E, Gauci CG, Kyngdon CY, Zoli AP, Dorny P, Geerts S, Lightowlers MW. 2010. Antibody responses to the host-protective Taenia solium oncosphere protein TSOL18 in pigs are directed against conformational epitopes. Parasite Immunol 32: 399-405. doi: 10.1111/j.13653024.2009.01197.x
Babayani, N. D., van Wyk, J. A., & Morgan, E. R. (2016). An elaborated SIR model for haemonchosis in sheep in South Africa under a targeted selective anthelmintic treatment regime. Preventive veterinary medicine, 134, 160-169.
Bachaya, H. A., Iqbal, Z., Jabbar, A., & Ali, R. (2006). Coping with loss of livestock.
Bagasra, O., & Prilliman, K. R. (2004). RNA interference: the molecular immune system. Journal of molecular histology, 35(6), 545-553.
Balic, A., Cunningham, C., & Meeusen, E. (2006). Eosinophil interactions with Haemonchus contortus larvae in the ovine gastrointestinal tract. Parasite immunology, 28(3), 107-115.
Barrère, V., Keller, K., von Samson-Himmelstjerna, G., & Prichard, R. K. (2013). Efficiency of a genetic test to detect benzimidazole resistant Haemonchus contortus nematodes in sheep farms in Quebec, Canada. Parasitology international, 62(5), 464-470.
Bassetto, C., & Amarante, A. (2015). Vaccination of sheep and cattle against haemonchosis. Journal of helminthology, 89(5), 517-525.
Bassetto, C., Silva, M., Newlands, G., Smith, W., Júnior, J. R., Martins, C. L., & Amarante, A. F. T. d. (2014). Vaccination of grazing calves with antigens from the intestinal membranes of Haemonchus contortus: effects against natural challenge with Haemonchus placei and Haemonchus similis. International journal for parasitology, 44(10), 697-702.
Bassetto, C. C. (2015). Proteção de ovinos e bovinos contra haemonchose após imunização com antígenos oriundos da membrana intestinal de Haemonchus contortus.
Bastos, L. M., Macêdo Jr, A. G., Silva, M. V., Santiago, F. M., Ramos, E. L., Santos, F. A., . . . Mineo, J. R. (2016). Toxoplasma gondii-derived synthetic peptides containing B-and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis. Frontiers in cellular and infection microbiology, 6, 59.
Besier, B., Lyon, J., Michael, D., Newlands, G., & Smith, D. (2012). Towards a commercial vaccine against Haemonchus contortus-a field trial in Western Australia. Paper presented at the Proc. Australian Sheep Vet Conf.
Besier, R., Kahn, L., Sargison, N., & Van Wyk, J. (2016a). Diagnosis, treatment and management of Haemonchus contortus in small ruminants Advances in parasitology (Vol. 93, pp. 181-238): Elsevier.
Besier, R., Kahn, L., Sargison, N., & Van Wyk, J. (2016b). The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants Advances in parasitology (Vol. 93, pp. 95-143): Elsevier.
Bethony, J., Loukas, A., Smout, M., Brooker, S., Mendez, S., Plieskatt, J., . . . Wang, Y. (2005). Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. The FASEB Journal, 19(12), 1743-1745.
Bharadwaj, R., Arya, R., Bhattacharya, S., & Bhattacharya, A. (2017). EhRho1 regulates plasma membrane blebbing through PI3 kinase in Entamoeba histolytica. Cellular microbiology.
Bishop-Hurley, S. L., Strachan, K. A., & Sutherland, I. A. (2010). The application of phage-displayed peptide libraries to ligand detection in eggs and larvae of Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 173(1-2), 173-177.
Bishop, S., & Morris, C. (2007). Genetics of disease resistance in sheep and goats. Small Ruminant Research, 70(1), 48-59.
Blackhall, W. J., Pouliot, J.-F., Prichard, R. K., & Beech, R. N. (1998). Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin-and moxidectin-selected strains. Experimental parasitology, 90(1), 42-48.
Bosco, A. (2014). The coprological diagnosis of gastrointestinal nematode infections in small ruminants.
Bowman, D. D. (2014). Georgis' Parasitology for Veterinarians-E-Book: Elsevier Health Sciences.
Brettmann, E. A., Shaik, J. S., Zangger, H., Lye, L.-F., Kuhlmann, F. M., Akopyants, N. S., . . . Ronet, C. (2016). Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proceedings of the National Academy of Sciences, 113(43), 11998-12005.
Britton, C., Roberts, B., & Marks, N. (2016). Functional genomics tools for Haemonchus contortus and lessons from other helminths Advances in parasitology (Vol. 93, pp. 599-623): Elsevier.
Britton, C., Samarasinghe, B., & Knox, D. P. (2012). Ups and downs of RNA interference in parasitic nematodes. Experimental parasitology, 132(1), 56-61.
Cachat, E., Newlands, G., Ekoja, S., McAllister, H., & Smith, W. (2010). Attempts to immunize sheep against Haemonchus contortus using a cocktail of recombinant proteases derived from the protective antigen, H‐gal‐GP. Parasite immunology, 32(6), 414-419.
Campbell, W., Fisher, M., Stapley, E., Albers-Schonberg, G., & Jacob, T. (1983). Ivermectin: a potent new antiparasitic agent. science, 221(4613), 823-828.
Cintra, M. C. R., Ollhoff, R. D., & Sotomaior, C. S. (2018). Sensitivity and specificity of the FAMACHA© system in growing lambs. Veterinary Parasitology.
Coelho, T., Adams, D., Silva, A., Lozeron, P., Hawkins, P. N., Mant, T., . . . Tranter, E. (2013). Safety and efficacy of RNAi therapy for transthyretin amyloidosis. New England Journal of Medicine, 369(9), 819-829.
Coles, G., Bauer, C., Borgsteede, F., Geerts, S., Klei, T., Taylor, M., & Waller, P. (1992). World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44(1-2), 35-44.
Cooper, G. M., Hausman R.E. (2000). The Cell: A Molecular Approach (Seventh Edition ed.): Sinauer Associates, Inc.
Corley, M., & Jarmon, A. (2012). Interleukin 13 as a biomarker for parasite resistance in goats naturally exposed to Haemonchus contortus. Journal of Agricultural Science, 4(7), 31.
Cotter, J., Van Burgel, A., & Besier, R. (2015). Anthelmintic resistance in nematodes of beef cattle in south-west Western Australia. Veterinary Parasitology, 207(3-4), 276-284.
Crook, E., O’Brien, D., Howell, S., Storey, B., Whitley, N., Burke, J., & Kaplan, R. (2016). Prevalence of anthelmintic resistance on sheep and goat farms in the mid-Atlantic region and comparison of in vivo and in vitro detection methods. Small Ruminant Research, 143, 89-96.
Chagas, A. M., Junior, F. D. S., Pacheco, A., da Cunha, A. B., dos Santos Cruz, J., Scofield, A., & Góes-Cavalcante, G. (2016). F200Y polymorphism of the β-tubulin isotype 1 gene in Haemonchus contortus and sheep flock management practices related to anthelmintic resistance in eastern Amazon. Veterinary Parasitology, 226, 104-108.
Chandra, S., Prasad, A., Yadav, N., Latchumikanthan, A., Rakesh, R., Praveen, K., . . . Sankar, M. (2015). Status of benzimidazole resistance in Haemonchus contortus of goats from different geographic regions of Uttar Pradesh, India. Veterinary Parasitology, 208(3-4), 263-267.
Chaparro, J. J., Villar, D., Zapata, J. D., López, S., Howell, S. B., López, A., & Storey, B. E. (2017). Multi-drug resistant Haemonchus contortus in a sheep flock in Antioquia, Colombia. Veterinary Parasitology: Regional Studies and Reports, 10, 29-34.
Chavez-Pena, C., & Kamen, A. A. (2018). RNA interference technology to improve the baculovirus-insect cell expression system. Biotechnology advances.
Chuang, C., Xing-Wang, C., Jian-Zhong, D., & Tiao-Ying, L. (2017). Evaluation of ELISA kit for detection of serum specific IgG antibodies against Taenia solium in diagnosis of human cysticercosis. Zhongguo xue xi chong bing fang zhi za zhi= Chinese journal of schistosomiasis control, 29(2), 228-230.
da Silva, D., de Menezes, B., Bettencourt, A., Frantz, A., Corrêa, M., Ruszkowski, G., . . . Hirschmann, L. (2017). FAMACHA® method as a tool to check the parasitic infestation caused by Haemonchus spp. in sheep. PUBVET, 11(10), 1015-1211.
de Matos, A. F. I. M., Nobre, C. O. R., Monteiro, J. P., Bevilaqua, C. M. L., Smith, W. D., & Teixeira, M. (2017). Attempt to control Haemonchus contortus in dairy goats with Barbervax®, a vaccine derived from the nematode gut membrane glycoproteins. Small Ruminant Research, 151, 1-4.
Dell’Oca, N., Basika, T., Corvo, I., Castillo, E., Brindley, P. J., Rinaldi, G., & Tort, J. F. (2014). RNA interference in Fasciola hepatica newly excysted juveniles: Long dsRNA induces more persistent silencing than siRNA. Molecular and biochemical parasitology, 197(1-2), 28-35.
Deplazes, P., Eckert, J., Pawlowski, Z., Machowska, L. & Gottstein, B. 1991. An enzyme-linked immunosorbent assay for diagnostic detection of Taenia saginata copro-antigens in humans. Transactions of the Royal Soc. Tropical Medicine and Hygiene 85:391
Díaz, A., Arenal, A., França, J., Gomes, A. L., Machado, M. A., Sossanovicz, M., . . . Molento, M. (2016). Optimization of an immunoenzymatic (ELISA) assay for detecting ovine antibodies against Haemonchus contortus. Cuban Journal of Agricultural Science, 49(4).
Ding, H., Shi, H., Shi, Y., Guo, X., Zheng, X., Chen, X., . . . Du, A. (2017). Characterization and function analysis of a novel gene, Hc-maoc-1, in the parasitic nematode Haemonochus contortus. Parasites & vectors, 10(1), 67.
dos Santos, J. M. L., Vasconcelos, J. F., Frota, G. A., Ribeiro, W. L. C., André, W. P. P., da Silva Vieira, L., . . . Monteiro, J. P. (2017). Haemonchus contortus β-tubulin isotype 1 gene F200Y and F167Y SNPs are both selected by ivermectin and oxfendazole treatments with differing impacts on anthelmintic resistance. Veterinary Parasitology, 248, 90-95.
Douch, P., Green, R., Morris, C., McEwan, J., & Windon, R. (1996). Phenotypic markers for selection of nematode-resistant sheep. International journal for parasitology, 26(8-9), 899-911.
Douch, P., Morum, P., & Rabel, B. (1996). Secretion of anti-parasite substances and leukotrienes from ovine gastrointestinal tissues and isolated mucosal mast cells. International journal for parasitology, 26(2), 205-211.
Drudge, J., Szanto, J., Wyant, Z., & Elam, G. (1964). Field studies on parasite control in sheep: comparison of thia-bendazole, ruelene, and phenothiazine. American journal of veterinary research, 25(108), 1512-1518.
Dutta, B., Konch, P., Rahman, T., Upadhyaya, T., Pathak, D., Tamuli, S., . . . Begum, S. (2017). Occurrence and pathology of Haemonchus contortus infection in Goats. J. of Ent, 1284-1287.
Edwards, E. E., Garner, B. C., Williamson, L. H., Storey, B. E., & Sakamoto, K. (2016). Pathology of Haemonchus contortus in New World camelids in the southeastern United States: a retrospective review. Journal of Veterinary Diagnostic Investigation, 28(2), 105-109.
El-Badry, A. 2009. ELISA-based coproantigen in human strongyloidiaisis: a diagnostic method correlating with worm burden. J. Egyptian Soc. Parasitology 39:757
Elgun, G. & Koltas, I.S. 2011. Investigation of Crypto sporidium spp. antigen by ELISA method in stool specimens obtained from patients with diarrhea. Parasitology Res. 108:395
Ellis, S., Newlands, G., Nisbet, A., & Matthews, J. (2012). Phage‐display library biopanning as a novel approach to identifying nematode vaccine antigens. Parasite immunology, 34(5), 285-295.
Fawzi, E. M., González-Sánchez, M. E., Corral, M. J., Cuquerella, M., & Alunda, J. M. (2014). Vaccination of lambs against Haemonchus contortus infection with a somatic protein (Hc23) from adult helminths. International Journal for Parasitology, 44(7), 429-436. doi: http://dx.doi.org/10.1016/j.ijpara.2014.02.009
Felippelli, G., Lopes, W. D. Z., Cruz, B. C., Teixeira, W. F. P., Maciel, W. G., Favero, F. C., . . . Gomes, L. V. C. (2014). Nematode resistance to ivermectin (630 and 700 μg/kg) in cattle from the Southeast and South of Brazil. Parasitology international, 63(6), 835-840.
Feng, J., Xu, R., Zhang, X., Han, Y., He, C., Lu, C., . . . Jin, Y. (2017). A candidate recombinant antigen for diagnosis of schistosomiasis japonica in domestic animals. Veterinary Parasitology, 243, 242-247.
Fiel, C., & Nari, A. (2013). Enfermedades parasitarias de importancia clínica y productiva en rumiantes.: fundamentos epidemiológicos para su diagnóstico y control.
Filipowicz, W. (2005). RNAi: the nuts and bolts of the RISC machine. Cell, 122(1), 17-20.
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. nature, 391(6669), 806.
Fontenot, M., Miller, J., Peña, M., Larsen, M., & Gillespie, A. (2003). Efficiency of feeding Duddingtonia flagrans chlamydospores to grazing ewes on reducing availability of parasitic nematode larvae on pasture. Veterinary Parasitology, 118(3-4), 203-213.
Fortes FS, Molento MB. Resistência anti-helmíntica em nematoides gastrintestinais de pequenos ruminantes: avanços e limitações para seu diagnóstico. Pesq Vet Bras 2013; 33(12): 1391-1402.
Gadahi, J. A., Ehsan, M., Wang, S., Zhang, Z., Yan, R., Song, X., . . . Li, X. (2017). Recombinant protein of Haemonchus contortus small GTPase ADP-ribosylation factor 1 (HcARF1) modulate the cell mediated immune response in vitro. Oncotarget, 8(68), 112211.
Gao, J., Wang, Y., Liu, Z., & Wang, Z. (2010). Phage display and its application in vaccine design. Annals of microbiology, 60(1), 13-19.
García-Coiradas, L., Angulo-Cubillán, F., Valladares, B., Martínez, E., de la Fuente, C., Alunda, J. M., & Cuquerella, M. (2010). Immunization against lamb haemonchosis with a recombinant somatic antigen of Haemonchus contortus (rHcp26/23). Veterinary medicine international, 2010.
García, J. A., Rodríguez-Diego, J. G., Torres-Hernández, G., Mahieu, M., García, E. G., & González-Garduño, R. (2007). The epizootiology of ovine gastrointestinal strongyles in the province of Matanzas, Cuba. Small Ruminant Research, 72(2), 119-126.
Gasser, R., & Samson-Himmelstjerna, G. v. (2016). Haemonchus contortus and haemonchosis–past, present and future trends (Vol. 93): Academic Press.
Gasser, R., Schwarz, E., Korhonen, P., & Young, N. (2016). Understanding Haemonchus contortus better through genomics and transcriptomics Advances in parasitology (Vol. 93, pp. 519-567): Elsevier.
Gava, S. G., Tavares, N. C., de Matos Salim, A. C., de Araújo, F. M. G., Oliveira, G., & Mourão, M. M. (2017). Schistosoma mansoni: Off-target analyses using nonspecific double-stranded RNAs as control for RNAi experiments in schistosomula. Experimental parasitology, 177, 98-103.
Geldhof, P., De Maere, V., Vercruysse, J., & Claerebout, E. (2007). Recombinant expression systems: the obstacle to helminth vaccines? TRENDS in Parasitology, 23(11), 527-532. doi: https://doi.org/10.1016/j.pt.2007.08.012
Geldhof, P., Murray, L., Couthier, A., Gilleard, J. S., McLauchlan, G., Knox, D. P., & Britton, C. (2006). Testing the efficacy of RNA interference in Haemonchus contortus. International journal for parasitology, 36(7), 801-810.
Geldhof, P., Visser, A., Clark, D., Saunders, G., Britton, C., Gilleard, J., . . . Knox, D. (2006). RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology, 134(5), 609-619.
Gieseler, K., Qadota, H., & Benian, G. M. (2005). Development, structure, and maintenance of C. elegans body wall muscle.
Gill, H., Watson, D., & Brandon, M. (1993). Monoclonal antibody to CD4+ T cells abrogates genetic resistance to Haemonchus contortus in sheep. Immunology, 78(1), 43.
Gilleard, J., & Beech, R. (2007). Population genetics of anthelmintic resistance in parasitic nematodes. Parasitology, 134(8), 1133-1147.
Gilleard, J. S. (2013). Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology, 140(12), 1506-1522.
Giordano, R. J., Edwards, J. K., Tuder, R. M., Arap, W., & Pasqualini, R. (2009). Combinatorial ligand-directed lung targeting. Proceedings of the American Thoracic Society, 6(5), 411-415.
Gnanasekar, M., Rao, K. V., He, Y.-X., Mishra, P. K., Nutman, T. B., Kaliraj, P., & Ramaswamy, K. (2004). Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infection and immunity, 72(8), 4707-4715.
Godoy, P., Che, H., Beech, R., & Prichard, R. (2015). Characterization of Haemonchus contortus P-glycoprotein-16 and its interaction with the macrocyclic lactone anthelmintics. Molecular and biochemical parasitology, 204(1), 11-15.
González-Miguel, J., Morchón, R., Gussoni, S., Bossetti, E., Hormaeche, M., Kramer, L. H., & Simón, F. (2014). Immunoproteomic approach for identification of Ascaris suum proteins recognized by pigs with porcine ascariasis. Veterinary Parasitology, 203(3-4), 343-348.
González-Sánchez, M. E., Cuquerella, M., & Alunda, J. M. (2018). Vaccination of lambs against Haemonchus contortus with the recombinant rHc23. Effect of adjuvant and antigen dose. PloS one, 13(3), e0193118.
Gordon, H. M., & Whitlock, H. (1939). A new technique for counting nematode eggs in sheep faeces. Journal of the council for Scientific and Industrial Research, 12(1), 50-52.
Grzelak, S., Moskwa, B., & Bień, J. (2018). Trichinella britovi muscle larvae and adult worms: stage-specific and common antigens detected by two-dimensional gel electrophoresis-based immunoblotting. Parasites & vectors, 11(1), 584.
Gu, Y., Li, J., Zhu, X., Yang, J., Li, Q., Liu, Z., . . . Li, Y. (2008). Trichinella spiralis: characterization of phage-displayed specific epitopes and their protective immunity in BALB/c mice. Experimental parasitology, 118(1), 66-74.
Hamad, K. K., Qadir, F. A., & Hamad, H. O. (2017). Control of antinematicidal-resistant gastrointestinal nematodes in tamed small ruminants: achievements, trends and prospectives. ZANCO Journal of Pure and Applied Sciences, 29(3), 62-77.
Han, K., Xu, L., Yan, R., Song, X., & Li, X. (2012). Vaccination of goats with glyceraldehyde-3-phosphate dehydrogenase DNA vaccine induced partial protection against Haemonchus contortus. Veterinary immunology and immunopathology, 149(3-4), 177-185.
Hart, E. H., Morphew, R. M., Bartley, D. J., Millares, P., Wolf, B. T., Brophy, P. M., & Hamilton, J. V. (2012). The soluble proteome phenotypes of ivermectin resistant and ivermectin susceptible Haemonchus contortus females compared. Veterinary Parasitology, 190(1), 104-113. doi: https://doi.org/10.1016/j.vetpar.2012.06.009
Heckler, R., Almeida, G., Santos, L., Borges, D., Neves, J., Onizuka, M., & Borges, F. (2014). P-gp modulating drugs greatly potentiate the in vitro effect of ivermectin against resistant larvae of Haemonchus placei. Veterinary Parasitology, 205(3-4), 638-645.
Hein, W., Pernthaner, A., Piedrafita, D., & Meeusen, E. (2010). Immune mechanisms of resistance to gastrointestinal nematode infections in sheep. Parasite immunology, 32(8), 541-548.
Hoberg, E. P., & Zarlenga, D. (2016). Evolution and biogeography of Haemonchus contortus: linking faunal dynamics in space and time Advances in parasitology (Vol. 93, pp. 1-30): Elsevier.
Höglund, J., Ljungstrom, S., Melville, L., & Skuce, P. J. (2017). Comparison of four diagnostic methods for detection and relative quantification of Haemonchus contortus eggs in faeces samples. Frontiers in veterinary science, 4, 239.
Hong-Geller, E., & N Micheva-Viteva, S. (2010). Functional gene discovery using RNA interference-based genomic screens to combat pathogen infection. Current drug discovery technologies, 7(2), 86-94.
Howell, A., Baylis, M., Smith, R., Pinchbeck, G., & Williams, D. (2015). Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds. Preventive veterinary medicine, 121(1-2), 41-48.
Iglesias, L. E., Sallovitz, J. M., Saumell, C. A., Sagüés, M. F., & Lifschitz, A. L. (2016). Transferencia de ivermectina desde masas fecales bovinas al suelo subyacente y vegetación: Universidad Nacional del Centro de la Provincia de Buenos Aires.
Iliev, P., Prelezov, P., Ivanov, A., Kirkova, Z., & Tonev, A. (2017). Clinical study of acute haemonchosis in lambs. Trakia Journal of Sciences, 15(1), 75.
Issa, Z., Grant, W., Stasiuk, S., & Shoemaker, C. (2005). Development of methods for RNA interference in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. International journal for parasitology, 35(9), 935-940.
Jansen, F., Dorny, P., Berkvens, D., Van Hul, A., Van den Broeck, N., Makay, C., . . . Gabriël, S. (2016). Assessment of the repeatability and border-plate effects of the B158/B60 enzyme-linked-immunosorbent assay for the detection of circulating antigens (Ag-ELISA) of Taenia saginata. Veterinary Parasitology, 227, 69-72.
Javanbakht, J., Hosseini, E., Mousavi, S., Hassan, M. A., Kazeroni, S. S., Khaki, F., . . . Alimohammadi, S. (2014). Evaluation of two Iranian domestic ovine breeds for their pathological findings to gastrointestinal infection of Haemonchus contortus. Journal of parasitic diseases, 38(3), 311-316.
Johnson, M., Behnke, J. & Coles, G. 1996. Detection of gastrointestinal nematodes by a coproantigen capture ELISA. Research in Vet. Sci. 60:7
Jurasek, M. E., Bishop-Stewart, J. K., Storey, B. E., Kaplan, R. M., & Kent, M. L. (2010). Modification and further evaluation of a fluorescein-labeled peanut agglutinin test for identification of Haemonchus contortus eggs. Veterinary Parasitology, 169(1-2), 209-213.
Kandil, O. M., Abdelrahman, K. A., Shalaby, H. A., Hendawy, S. H., El Ezz, N. M. A., Nassar, S. A., & Miller, J. E. (2017). Evaluation of crude larval protein and recombinant somatic protein 26/23 (rHcp26/23) immunization against Haemonchus contortus in sheep. Veterinary world, 10(7), 758.
Kaplan, R. M., & Vidyashankar, A. N. (2012). An inconvenient truth: global worming and anthelmintic resistance. Veterinary Parasitology, 186(1-2), 70-78.
Kearney, P., Murray, P., Hoy, J., Hohenhaus, M., & Kotze, A. (2016). The ‘Toolbox’of strategies for managing Haemonchus contortus in goats: What’s in and what’s out. Veterinary Parasitology, 220, 93-107.
Kehoe, J. W., & Kay, B. K. (2005). Filamentous phage display in the new millennium. Chemical reviews, 105(11), 4056-4072.
Khalafalla, R.E., Elseify, M.A. & Elbahy, N.M. 2011. Seasonal prevalence of gastrointestinal nematode parasites of sheep in Northern region of Nile Delta, Egypt. Parasitology Res. 108:337
Kelly, G., Kahn, L., & Walkden-Brown, S. (2010). Integrated parasite management for sheep reduces the effects of gastrointestinal nematodes on the Northern Tablelands of New South Wales. Animal Production Science, 50(12), 1043-1052.
Khalil, M. I., Foda, B. M., Suresh, S., & Singh, U. (2016). Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica. International journal for parasitology, 46(3), 205-212.
Kleshchenko, Y. E., Zhigunova, A., Dalin, M., & Melnikov, V. (2017). Peptides Selected Using Phage Library Variants, Effectively Inhibit Trypanosoma cruzi Infection. Bulletin of experimental biology and medicine, 163(3), 361-364.
Knight, A. J., & Behm, C. A. (2012). Minireview: the role of the vacuolar ATPase in nematodes. Experimental parasitology, 132(1), 47-55.
Knox, D. P., & Smith, W. D. (2001). Vaccination against gastrointestinal nematode parasites of ruminants using gut-expressed antigens. Veterinary Parasitology, 100(1–2), 21-32. doi: http://dx.doi.org/10.1016/S0304-4017(01)00480-0
Kotze, A., & Prichard, R. (2016). Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis Advances in parasitology (Vol. 93, pp. 397-428): Elsevier.
Kotze, A. C., & Bagnall, N. H. (2006). RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Molecular and biochemical parasitology, 145(1), 101-110.
Kotze, A. C., Cowling, K., Bagnall, N. H., Hines, B. M., Ruffell, A. P., Hunt, P. W., & Coleman, G. T. (2012). Relative level of thiabendazole resistance associated with the E198A and F200Y SNPs in larvae of a multi-drug resistant isolate of Haemonchus contortus. International Journal for Parasitology: Drugs and Drug Resistance, 2, 92-97.
Kotze, A. C., Hunt, P. W., Skuce, P., von Samson-Himmelstjerna, G., Martin, R. J., Sager, H., . . . Jex, A. R. (2014). Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. International Journal for Parasitology: Drugs and Drug Resistance, 4(3), 164-184.
Kumar, B., Manjunathachar, H., & Ghosh, S. (2015). Identification of Cathepsin L gene from Hyalomma anatolicum and its comparative sequence analysis with Rhipicephalus (Boophilus) microplus and other hard ticks. Journal of Veterinary Parasitology, 29(1), 10-19.
Kumar, M., Ranjan, T., Natra, N., & Shamim, M. (2017). RNA Interference and Virus-Induced Gene Silencing in Plants Plant Biotechnology, Volume 2 (pp. 93-120): Apple Academic Press.
Kwa, M. S., Veenstra, J. G., Van Dijk, M., & Roos, M. H. (1995). β-Tubulin Genes from the Parasitic NematodeHaemonchus contortusModulate Drug Resistance inCaenorhabditis elegans. Journal of molecular biology, 246(4), 500-510.
Lacroux C, Nguyen THC, Andreoletti O, Prevot F, Grisez C, Bergeaud JP, Gruner L, et al. 2006. Haemonchus contortus (Nematoda: Trichostrongylidae) infection in lambs elicits an unequivocal Th2 immune response. Vet Res 37: 607-622. doi: 10.1051/ vetres:2006022
Laing, R., Gillan, V., & Devaney, E. (2017). Ivermectin–Old Drug, New Tricks? TRENDS in Parasitology, 33(6), 463-472.
Laing, R., Martinelli, A., Tracey, A., Holroyd, N., Gilleard, J., & Cotton, J. (2016). Haemonchus contortus: genome structure, organization and comparative genomics Advances in parasitology (Vol. 93, pp. 569-598): Elsevier.
Lamb, J., Elliott, T., Chambers, M., & Chick, B. (2017). Broad spectrum anthelmintic resistance of Haemonchus contortus in Northern NSW of Australia. Veterinary Parasitology, 241, 48-51.
Lambert, S. M., Nishi, S. M., Mendonça, L. R., da Silva Souza, B. M. P., da Silva Julião, F., da Silva Gusmão, P., & de Almeida, M. A. O. (2017). Genotypic profile of benzimidazole resistance associated with SNP F167Y and F200Y beta-tubulin gene in Brazilian populations of Haemonchus contortus of goats. Veterinary Parasitology: Regional Studies and Reports, 8, 28-34.
Lane, J., Jubb, T., Shepherd, R., Webb-Ware, J., & Fordyce, G. (2015). Priority list of endemic diseases for the red meat industries. Final Report: Meat & Livestock Australia L.
Lashari, M. H., Tasawar, Z., Akhtar, M. S., Chaudhary, M. S., & Sial, N. (2015). Prevalence of Haemonchus contortus in local goats of DG Khan.”. World J. Pharm. Pharmaceut. Sci, 4(5), 190-196.
Leathwick, D., & Miller, C. (2013). Efficacy of oral, injectable and pour-on formulations of moxidectin against gastrointestinal nematodes in cattle in New Zealand. Veterinary Parasitology, 191(3-4), 293-300.
Leathwick, J., Moilanen, A., Ferrier, S., & Julian, K. (2010). Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biological Conservation, 143(4), 984-991.
Lee, D. L. (2002). Life cycles. The biology of nematodes, 61-72.
Lei, W.-Q., Lok, J. B., Yuan, W., Zhang, Y.-Z., Stoltzfus, J. D., Gasser, R. B., . . . Zhao, J.-L. (2017). Structural and developmental expression of Ss-riok-2, an RIO protein kinase encoding gene of Strongyloides stercoralis. Scientific reports, 7(1), 8693.
Li, Y., Yuan, C., Wang, L., Lu, M., Wang, Y., Wen, Y., . . . Li, X. (2016). Transmembrane protein 147 (TMEM147): another partner protein of Haemonchus contortus galectin on the goat peripheral blood mononuclear cells (PBMC). Parasites & vectors, 9(1), 355.
Lifschitz, A., Entrocasso, C., Alvarez, L., Lloberas, M., Ballent, M., Manazza, G., . . . Lanusse, C. (2010). Interference with P-glycoprotein improves ivermectin activity against adult resistant nematodes in sheep. Veterinary Parasitology, 172(3-4), 291-298.
Lightowlers, M. W., Colebrook, A. L., Gauci, C. G., Gauci, S. M., Kyngdon, C. T., Monkhouse, J. L., . . . Sato, C. (2003). Vaccination against cestode parasites: anti-helminth vaccines that work and why. Veterinary Parasitology, 115(2), 83-123. doi: https://doi.org/10.1016/S0304-4017(03)00202-4
Link, J. S., Alban, S. M., Soccol, C. R., Pereira, G. V. M., & Thomaz Soccol, V. (2017). Synthetic Peptides as Potential Antigens for Cutaneous Leishmaniosis Diagnosis. Journal of immunology research, 2017.
Liu, Y., Li, F., Liu, W., Dai, R., Tan, Y., He, D., Lin, R. & Zhu, X. 2009. Prevalence of helminths in water buffaloes in Hunan Province, China. Tropical Animal Health and Production 41:543
Liu, Y., Brindley, P. J., Zeng, Q., Li, Y., Zhou, J., Chen, Y., . . . Cai, L. (2011). Identification of phage display peptides with affinity for the tegument of Schistosoma japonicum schistosomula. Molecular and Biochemical Parasitology, 180(2), 86-98.
Long, S. R., Wang, Z. Q., Liu, R. D., Liu, L. N., Li, L. G., Jiang, P., . . . Cui, J. (2014). Molecular identification of Trichinella spiralis nudix hydrolase and its induced protective immunity against trichinellosis in BALB/c mice. Parasites & vectors, 7(1), 600. doi: 10.1186/s13071-014-0600-9
Luo, X., Shi, X., Yuan, C., Ai, M., Ge, C., Hu, M., . . . Yang, X. (2017). Genome-wide SNP analysis using 2b-RAD sequencing identifies the candidate genes putatively associated with resistance to ivermectin in Haemonchus contortus. Parasites & vectors, 10(1), 31.
Lynagh, T., & Lynch, J. W. (2010). A glycine residue essential for high ivermectin sensitivity in Cys-loop ion channel receptors. International journal for parasitology, 40(13), 1477-1481.
Lynagh, T., & Lynch, J. W. (2012). Ivermectin binding sites in human and invertebrate Cys-loop receptors. Trends in pharmacological sciences, 33(8), 432-441.
Lyon, J. (2014). Development and production of a vaccine against Haemonchus contortus in sheep. Department of Agriculture and Food, Government of Western Australia, Australia. Retrieved 23032018, 2018, from https://www.agric.wa.gov.au/livestock-research-development/development-and-production-barbervax-vaccine-against-barbers-pole
Ma, G. X., Zhou, R. Q., Song, Z. H., Zhu, H. H., Zhou, Z. Y., & Zeng, Y. Q. (2015). Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα–PP1r7) in spermatogenesis of Toxocara canis. Acta tropica, 149, 148-154.
MacKinnon, K., Bowdridge, S., Kanevsky-Mullarky, I., Zajac, A., & Notter, D. (2015). Gene expression profiles of hair and wool sheep reveal importance of Th2 immune mechanisms for increased resistance to Haemonchus contortus. Journal of animal science, 93(5), 2074-2082.
Maqbool, I., Malla, B. A., Mohmad, A., Dutta, N., Manzoor, N., Kushwaha, B., . . . Para, I. A. (2018). Vaccination against Haemonchus contortus in Small Ruminants: A Review. Int. J. Curr. Microbiol. App. Sci, 7(11), 2878-2895.
Marinets, A., Zhang, T., Guillén, N., Gounon, P., Bohle, B., Vollmann, U., . . . Duchêne, M. (1997). Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica. Journal of Experimental Medicine, 186(9), 1557-1565.
Marr, E., Sargison, N., Nisbet, A., & Burgess, S. (2014). RNA interference for the identification of ectoparasite vaccine candidates. Parasite immunology, 36(11), 616-626.
Martín, S., Molina, J., Hernández, Y., Ferrer, O., Muñoz, M. C., López, A., . . . Ruiz, A. (2015). Influence of immunoprotection on genetic variability of cysteine proteinases from Haemonchus contortus adult worms. International journal for parasitology, 45(13), 831-840.
Maule, A. G., McVeigh, P., Dalzell, J. J., Atkinson, L., Mousley, A., & Marks, N. J. (2011). An eye on RNAi in nematode parasites. TRENDS in Parasitology, 27(11), 505-513.
McCoy, C. J., Warnock, N. D., Atkinson, L. E., Atcheson, E., Martin, R. J., Robertson, A. P., . . . Mousley, A. (2015). RNA interference in adult Ascaris suum–an opportunity for the development of a functional genomics platform that supports organism-, tissue-and cell-based biology in a nematode parasite. International journal for parasitology, 45(11), 673-678.
McKellar, Q. A., & Jackson, F. (2004). Veterinary anthelmintics: old and new. TRENDS in Parasitology, 20(10), 456-461.
McLeod, R. (2004). Economic impact of worm infections in small ruminants in South East Asia, India and Australia. Worm control for small ruminants in tropical Asia, 23.
Medina-Pérez, P., Ojeda-Robertos, N., Reyes-García, M., Cámara-Sarmiento, R., & Torres-Acosta, J. (2015). Evaluation of a targeted selective treatment scheme to control gastrointestinal nematodes of hair sheep under hot humid tropical conditions. Small Ruminant Research, 127, 86-91.
Medina, O. (2019). Haemonchosis, fasciolosis y paramfistomosis: prevalencia y factores de riesgo en pequeños rumiantes de la provincia Las Tunas. (Tesis de Maestría), Universidad de Camagüey, Camagüey.
Meier, L., Torgerson, P. R., & Hertzberg, H. (2016). Vaccination of goats against Haemonchus contortus with the gut membrane proteins H11/H-gal-GP. Veterinary Parasitology, 229, 15-21.
Melzer, H., Fortugno, P., Mansouri, E., Felici, F., Marinets, A., Wiedermann, G., . . . Duchêne, M. (2002). Antigenicity and immunogenicity of phage library‐selected peptide mimics of the major surface proteophosphoglycan antigens of Entamoeba histolytica. Parasite immunology, 24(6), 321-328.
Miller, C., Waghorn, T., Leathwick, D., Candy, P., Oliver, A. B., & Watson, T. (2012). The production cost of anthelmintic resistance in lambs. Veterinary Parasitology, 186(3-4), 376-381.
Miller, H., Knight, P., & Pemberton, A. (2006). Mucus; Modulation By The The Response To Enhance An Innate Defensive Barrier Against Gut Nematodes. Parasite immunology, 28(6), 259-262.
Misra, S., Gupta, J., & Misra-Bhattacharya, S. (2017). RNA interference mediated knockdown of Brugia malayi UDP-Galactopyranose mutase severely affects parasite viability, embryogenesis and in vivo development of infective larvae. Parasites & vectors, 10(1), 34.
Mohammed, K., Abba, Y., Ramli, N. S. B., Marimuthu, M., Omar, M. A., Abdullah, F. F. J., . . . Lila, M. A. M. (2016). The use of FAMACHA in estimation of gastrointestinal nematodes and total worm burden in Damara and Barbados Blackbelly cross sheep. Tropical animal health and production, 48(5), 1013-1020.
Mohandas, N., Young, N. D., Jabbar, A., Korhonen, P. K., Koehler, A. V., Hall, R. S., . . . Gasser, R. B. (2016). The complement of family M1 aminopeptidases of Haemonchus contortus—Biotechnological implications. Biotechnology advances, 34(2), 65-76.
Molento, M. B. (2009). Parasite control in the age of drug resistance and changing agricultural practices. Veterinary Parasitology, 163(3), 229-234.
Molina, J., Martín, S., Hernández, Y., González, J., Ferrer, O., & Ruiz, A. (2012). Immunoprotective effect of cysteine proteinase fractions from two Haemonchus contortus strains adapted to sheep and goats. Veterinary Parasitology, 188(1-2), 53-59.
Molina, J. M., Hernández, Y. I., Martín, S., Ferrer, O., Rodríguez, F., & Ruiz, A. (2018). Immune response in goats vaccinated with thiol‐binding proteins from Haemonchus contortus. Parasite immunology, e12569.
Mooney, J. T., Fredericks, D., & Hearn, M. T. (2011). Use of phage display methods to identify heptapeptide sequences for use as affinity purification ‘tags’ with novel chelating ligands in immobilized metal ion affinity chromatography. Journal of Chromatography A, 1218(1), 92-99.
Morgan, E. (2011). The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology, 138(6), 780-788.
Muleke, C. I., Yan, R., Sun, Y., Zhao, G., Xu, L., & Li, X. (2007). Vaccination of goats against Haemonchus contortus with a recombinant cysteine protease. Small Ruminant Research, 73(1–3), 95-102. doi: http://dx.doi.org/10.1016/j.smallrumres.2006.11.006
Muñoz-Caro, T., Silva, L. M., Magdowski, G., Gärtner, U., McNeilly, T. N., Taubert, A., & Hermosilla, C. (2015). Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment. Parasites & vectors, 8(1), 607.
Muñoz-Guzmán, M., Cuenca-Verde, C., Valdivia-Anda, G., Cuéllar-Ordaz, J., & Alba-Hurtado, F. (2012). Differential immune response between fundic and pyloric abomasal regions upon experimental ovine infection with Haemonchus contortus. Veterinary Parasitology, 185(2-4), 175-180.
Nabukenya, I., Rubaire-Akiiki, C., Olila, D., Muhangi, D., & Höglund, J. (2014). Anthelmintic resistance in gastrointestinal nematodes in goats and evaluation of FAMACHA diagnostic marker in Uganda. Veterinary Parasitology, 205(3-4), 666-675.
Newton, S. E., Munn, E.A. (1999). The development of vaccines against gastrointestinal nematodes, particularly Haemonchus contortus. Parasitology Today., 15, 116–122.
Nickel, B., Sayasone, S., Vonghachack, Y., Odermatt, P., & Marti, H. (2015). Schistosoma mansoni antigen detects Schistosoma mekongi infection. Acta tropica, 141, 310-314.
Nieuwhof, G., & Bishop, S. (2005). Costs of the major endemic diseases of sheep in Great Britain and the potential benefits of reduction in disease impact. Animal Science, 81(1), 23-29.
Nisbet, A., Meeusen, E., González, J., & Piedrafita, D. (2016). Immunity to Haemonchus contortus and vaccine development Advances in parasitology (Vol. 93, pp. 353-396): Elsevier.
Nnadi, P., Kamalu, T., & Onah, D. (2009). The effect of dietary protein on the productivity of West African Dwarf (WAD) goats infected with Haemonchus contortus. Veterinary Parasitology, 161(3-4), 232-238.
Notter, D., Burke, J., Miller, J., & Morgan, J. (2017). Association between FAMACHA scores and fecal egg counts in Katahdin lambs. Journal of animal science, 95(3), 1118-1123.
O’Connor, L. J., Walkden-Brown, S. W., & Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology, 142(1-2), 1-15.
Ojeda-Robertos, N. F., de Jesus Torres-Acosta, J. F., Aguilar-Caballero, A. J., Ayala-Burgos, A., Cob-Galera, L. A., Sandoval-Castro, C. A., . . . de Gives, P. M. (2008). Assessing the efficacy of Duddingtonia flagrans chlamydospores per gram of faeces to control Haemonchus contortus larvae. Veterinary Parasitology, 158(4), 329-335.
Oliveira, A.C., Nunes, A.P., Bern, M.E.N., Borba, M.F.S., Echevarria, F., Vaz, C.M. & Carvalho, F.I.F. 2012. Estudo da variabilidade genética de resistência a nematódeos gastrintestinais em ovinos da raça corriedale com marcadores RAPD. Current Agricultural Sci. Technol. 13
Ortíz, R. G. (2017). Identificación de helmintos gastrointestinales zoonóticos en primates en cautiverio. Previo a la obtención del título de Médico Veterinario Zootecnista. Cevallos-Ecuador.
Pande, J., Szewczyk, M. M., & Grover, A. K. (2010). Phage display: concept, innovations, applications and future. Biotechnology advances, 28(6), 849-858.
Pérez-Cogollo, L. C., Rodríguez-Vivas, R. I., Basto-Estrella, G. d. S., Reyes-Novelo, E., Martínez-Morales, I., Ojeda-Chi, M. M., & Favila, M. E. (2018). Toxicidad y efectos adversos de las lactonas macrocíclicas sobre los escarabajos estercoleros: una revisión. Revista mexicana de biodiversidad, 89(4), 1293-1314.
Piedrafita, D., Meeusen, E., & Stear, M. (2017). Modulation of Haemonchus contortus infection by depletion of γδ+ T cells in parasite resistant Canaria Hair Breed sheep. Veterinary Parasitology.
Piedrafita, D., Preston, S., Kemp, J., de Veer, M., Sherrard, J., Kraska, T., . . . Meeusen, E. (2013). The effect of different adjuvants on immune parameters and protection following vaccination of sheep with a larval-specific antigen of the gastrointestinal nematode, Haemonchus contortus. PloS one, 8(10), e78357.
Piluzza, G., Sulas, L., & Bullitta, S. (2014). Tannins in forage plants and their role in animal husbandry and environmental sustainability: a review. Grass and Forage Science, 69(1), 32-48.
Preston, S., Beddoe, T., Walkden-Brown, S., Meeusen, E., & Piedrafita, D. (2015). Galectin-11: a novel host mediator targeting specific stages of the gastrointestinal nematode parasite, Haemonchus contortus. International journal for parasitology, 45(12), 791-796.
Prichard, R., Oxberry, M., Bounhas, Y., Sharma, S., Lubega, G., & Geary, T. (2000). Polymerisation and benzimidazole binding assays with recombinant α-and β-tubulins from Haemonchus contortus. Paper presented at the American Association of Veterinary Parasitologists, Forty-fifth Annual Meeting.
Prudencio, C. R., Marra, A. O., Cardoso, R., & Goulart, L. R. (2010). Recombinant peptides as new immunogens for the control of the bovine tick, Rhipicephalus(Boophilus) microplus. Veterinary Parasitology, 172(1), 122-131.
Qasim, H. M., Avais, M., Durrani, A. Z., Khan, M. A., & Shahzad, A. H. (2016). Dynamic Dispersal of Haemonchosis, its Treatment and Effect on Blood Profile of Small Ruminants of Lodhran District, Punjab, Pakistan. Pakistan J. Zool, 48(3), 755-761.
Qi, H., Lu, H., Qiu, H.-J., Petrenko, V., & Liu, A. (2012). Phagemid vectors for phage display: properties, characteristics and construction. Journal of molecular biology, 417(3), 129-143.
Quispe Pérez, E. R. (2020). Toxicidad de Ivermectina de uso veterinario expuesta a radiación solar sobre Hyalella curvispina (Amphypoda). Previo a la obtención del título de Biólogo, en la especialidad de Ecología y Recursos Naturales. Ayacucho – Perú.
Rainbird, M., Macmillan, D., & Meeusen, E. T. (1998). Eosinophil‐mediated killing of Haemonchus contortus larvar: effect of eosinophil activation and role of antobody, complement and interleukin‐5. Parasite immunology, 20(2), 93-103.
Ramünke, S., Melville, L., Rinaldi, L., Hertzberg, H., de Waal, T., von Samson-Himmelstjerna, G., . . . Krücken, J. (2016). Benzimidazole resistance survey for Haemonchus, Teladorsagia and Trichostrongylus in three European countries using pyrosequencing including the development of new assays for Trichostrongylus. International Journal for Parasitology: Drugs and Drug Resistance, 6(3), 230-240.
Rashid, S., & Irshadullah, M. (2018). Epidemiology and seasonal dynamics of adult Haemonchus contortus in goats of Aligarh, Uttar Pradesh, India. Small Ruminant Research, 161, 63-67.
Raza, A., Kopp, S. R., Jabbar, A., & Kotze, A. C. (2015). Effects of third generation P-glycoprotein inhibitors on the sensitivity of drug-resistant and-susceptible isolates of Haemonchus contortus to anthelmintics in vitro. Veterinary Parasitology, 211(1-2), 80-88.
Redmond, D. L., & Knox, D. P. (2004). Protection studies in sheep using affinity-purified and recombinant cysteine proteinases of adult Haemonchus contortus. Vaccine, 22(31–32), 4252-4261. doi: http://dx.doi.org/10.1016/j.vaccine.2004.04.028
Regassa, F., Sori, T., Dhuguma, R., & Kiros, Y. (2006). Epidemiology of gastrointestinal parasites of ruminants in Western Oromia, Ethiopia. International Journal of Applied Research in Veterinary Medicine, 4(1), 51.
Rehman, Z., Deng, Q., Umair, S., Savoian, M., Knight, J., Pernthaner, A., & Simpson, H. (2016). Excretory/secretory products of adult Haemonchus contortus and Teladorsagia circumcincta which increase the permeability of Caco-2 cell monolayers are neutralised by antibodies from immune hosts. Veterinary Parasitology, 221, 104-110.
Rhaiem, R. B., & Houimel, M. (2016). Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library. Acta tropica, 159, 11-19.
Rinaldi, L. (2014). The coprological diagnosis of gastrointestinal nematode infections in small ruminants. Ghent University.
Rinaldi, L., Catelan, D., Musella, V., Cecconi, L., Hertzberg, H., Torgerson, P. R., . . . Coll, T. (2015). Haemonchus contortus: spatial risk distribution for infection in sheep in Europe. Geospatial health, 9(2), 325-331.
Roberts, B., Antonopoulos, A., Haslam, S. M., Dicker, A. J., McNeilly, T. N., Johnston, S. L., . . . Britton, C. (2013). Novel expression of Haemonchus contortus vaccine candidate aminopeptidase H11 using the free-living nematode Caenorhabditis elegans. Veterinary research, 44(1), 111.
Robinson, N. E. (2002). Protein deamidation. Proceedings of the National Academy of Sciences, 99(8), 5283-5288.
Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. d. J., Fragoso Sánchez, H., . . . Garcia Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1).
Roeber, F., Jex, A. R., & Gasser, R. B. (2013). Next-generation molecular-diagnostic tools for gastrointestinal nematodes of livestock, with an emphasis on small ruminants: a turning point? Advances in parasitology (Vol. 83, pp. 267-333): Elsevier.
Rogalski, T. M., Gilbert, M. M., Devenport, D., Norman, K. R., & Moerman, D. G. (2003). DIM-1, a novel immunoglobulin superfamily protein in Caenorhabditis elegans, is necessary for maintaining bodywall muscle integrity. Genetics, 163(3), 905-915.
Roque Cortez, C. L. (2019). Efecto del Biofilm de dos cepas bacterianas nativas sobre el asentamiento de larvas de Argopecten purpuratus (LAMARCK 1819) en Laboratorio.
Rosa, B. A., Townsend, R., Jasmer, D. P., & Mitreva, M. (2015). Functional and phylogenetic characterization of proteins detected in various nematode intestinal compartments. Molecular & Cellular Proteomics, 14(4), 812-827.
Rose, H., Hoar, B., Kutz, S. J., & Morgan, E. R. (2014). Exploiting parallels between livestock and wildlife: predicting the impact of climate change on gastrointestinal nematodes in ruminants. International Journal for Parasitology: Parasites and Wildlife, 3(2), 209-219.
Rowe, J., Nolan, J., De Chaneet, G., Teleni, E., & Holmes, P. (1988). The effect of haemonchosis and blood loss into the abomasum on digestion in sheep. British Journal of Nutrition, 59(1), 125-139.
Ruiz, A., Pérez, D., Muñoz, M., Molina, J., Taubert, A., Jacobs-Lorena, M., . . . Hermosilla, C. (2015). Targeting essential Eimeria ninakohlyakimovae sporozoite ligands for caprine host endothelial cell invasion with a phage display peptide library. Parasitology research, 114(11), 4327-4331.
Russel, M., Lowman, H. B., & Clackson, T. (2004). Introduction to phage biology and phage display. Phage Display: A practical approach, 1-26.
Saddiqi, H. A., Jabbar, A., Sarwar, M., Iqbal, Z., Muhammad, G., Nisa, M., & Shahzad, A. (2011). Small ruminant resistance against gastrointestinal nematodes: a case of Haemonchus contortus. Parasitology research, 109(6), 1483-1500.
Sakthivel, D., Swan, J., Preston, S., Shakif-Azam, M., Faou, P., Jiao, Y., . . . Piedrafita, D. (2017). Proteomic identification of Galectin-11 and 14 ligands from Haemonchus contortus. PeerJ PrePrints.
Salles, B. C., Costa, L. E., Alves, P. T., Dias, A. C., Vaz, E. R., Menezes-Souza, D., . . . Chávez-Fumagalli, M. A. (2017). Leishmania infantum mimotopes and a phage–ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagnostic microbiology and infectious disease, 87(3), 219-225.
Samarasinghe, B., Knox, D. P., & Britton, C. (2011). Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. International journal for parasitology, 41(1), 51-59. doi: https://doi.org/10.1016/j.ijpara.2010.07.005
Saminathan, M., Gopalakrishnan, A., Latchumikanthan, A., Milton, A., Aravind, M., Dhama, K., & Singh, R. (2015). Histopathological and parasitological study of blood-sucking Haemonchus contortus infection in sheep. Adv. Anim. Vet. Sci, 3(2), 99-108.
Sanabria-Ayala, V., Belmont, I., & Abraham, L. (2015). Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity. Parasitology research, 114(1), 55-64.
Santos, M. C., Xavier, J. K., Amarante, M. R. V., Bassetto, C. C., & Amarante, A. F. T. (2014). Immune response to Haemonchus contortus and Haemonchus placei in sheep and its role on parasite specificity. Veterinary Parasitology, 203(1–2), 127-138. doi: http://dx.doi.org/10.1016/j.vetpar.2014.02.048
Sargison, N., Jackson, F., & Gilleard, J. (2011). Effects of age and immune suppression of sheep on fecundity, hatching and larval feeding of different strains of Haemonchus contortus. The Veterinary Journal, 189(3), 296-301.
Sevilla Miranda, J. J., & Murillo García, Y. J. (2021). Parasitosis gastrointestinales en equinos de campo (Equus Ferus Caballus), agropecuaria el Ancla comunidad el Hatillo Acoyapa Chontales-octubre 2020. Universidad Nacional Agraria.
Scott, I., Pomroy, W., Kenyon, P., Smith, G., Adlington, B., & Moss, A. (2013). Lack of efficacy of monepantel against Teladorsagia circumcincta and Trichostrongylus colubriformis. Veterinary Parasitology, 198(1-2), 166-171.
Schallig, H., Hornok, S., & Cornelissen, J. (1995). Comparison of two enzyme immunoassays for the detection of Haemonchus contortus infections in sheep. Veterinary Parasitology, 57(4), 329-338.
Schrader, T. A., & Schrader, M. (2017). siRNA-mediated Silencing of Peroxisomal Genes in Mammalian Cells. Peroxisomes: Methods and Protocols, 69-79.
Shaw, R., Pfeffer, A., & Bischof, R. (2009). Ovine IgE and its role in immunological protection and disease. Veterinary Immunology and Immunopathology, 132(1), 31-40.
Silva, W. W., Delfino, L. J. B., do Carmo Medeiros, M., & Silva, J. P. (2017). Multiple resistances of gastrointestinal nematodes to anthelmintic groups in cattle of semiarid of Paraíba, Brazil. Acta Brasiliensis, 1(2), 29-32.
Smith, G. P., Petrenko, VA. (1997). Phage Display. Chem. Rev, 97, 391-410.
Smith, W., Newlands, G., Smith, S., Pettit, D., & Skuce, P. (2003). Metalloendopeptidases from the intestinal brush border of Haemonchus contortus as protective antigens for sheep. Parasite immunology, 25(6), 313-323.
Smith, W. D., & Zarlenga, D. S. (2006). Developments and hurdles in generating vaccines for controlling helminth parasites of grazing ruminants. Veterinary Parasitology, 139(4), 347-359. doi: https://doi.org/10.1016/j.vetpar.2006.04.024
Sommerville, R. (1966). The development of Haemonchus contortus to the fourth stage in vitro. The Journal of parasitology, 127-136.
Spracklin, G., Fields, B., Wan, G., Vijayendran, D., Wallig, A., Shukla, A., & Kennedy, S. (2017). Identification and Characterization of Caenorhabditis elegans RNAi Inheritance Machinery. Genetics, genetics. 116.198812.
Storey, B. E., Williamson, L. H., Howell, S. B., Terrill, T. H., Berghaus, R., Vidyashankar, A. N., & Kaplan, R. M. (2017). Validation of the FAMACHA© system in South American camelids. Veterinary Parasitology, 243, 85-91.
Suárez, V. H., Fondraz, M., Viñabal, A. E., & Salatin, A. O. (2014). Validación del método FAMACHA© para detectar anemia en caprinos lecheros en los valles templados del Noroeste Argentino. Rev Med Vet (B Aires), 95(2), 4-11.
Sun, G.-G., Wang, Z.-Q., Liu, C.-Y., Jiang, P., Liu, R.-D., Wen, H., . . . Cui, J. (2015). Early serodiagnosis of trichinellosis by ELISA using excretory–secretory antigens of Trichinella spiralis adult worms. Parasites & vectors, 8(1), 484.
Sutherland, I., & Scott, I. (2010). Gastrointestinal nematodes of sheep and cattle: biology and control: John Wiley & Sons.
Tak, I., Dar, J., Dar, S., Ganai, B., Chishti, M., & Ahmad, F. (2015). A comparative analysis of various antigenic proteins found in Haemonchus contortus—a review. Molecular Biology, 49(6), 789-795.
Tang, L.-F., Yi, X.-Y., Zeng, X.-F., Wang, L.-Q., & Zhang, S.-K. (2004). Schistosoma japonicum: Isolation and identification of peptides mimicking ferritin epitopes from phage display library. Acta biochimica et biophysica Sinica, 36(3), 206-210.
Tariq, K. A. (2017). Anthelmintics and emergence of anthelmintic resistant nematodes in sheep: need of an integrated nematode management.
Tavernor AS, Smith TS, Langford CF, Graham M, Munn EA. 1992. Immune response of Clun Forest sheep to vaccination with membrane glycoproteins from Haemonchus contortus. Parasite Immunol 14: 671-675. doi: 10.1111/ j.1365-3024.1992.tb00038.
Taylor, M., Coop, R., & Wall, R. (2007a). Parasites of poultry and gamebirds. Veterinary Parasitology, 3rd ed., Blackwell Publishing, Oxford, 531-533.
Taylor, M., Coop, R., & Wall, R. (2007b). Veterinary Parasitology. 3rd edn. Blackwell Publishing: UK.
Thomas, M., & Syamala, K. (2017). SENSITIVITY AND SPECIFICITY OF THE FAMACHA SYSTEM IN ATTAPPADY BLACK GOATS© OF KERALA. Indian Journal of Small Ruminants (The), 23(2), 204-207.
Tijsterman, M., Ketting, R. F., & Plasterk, R. H. (2002). The genetics of RNA silencing. Annual Review of Genetics, 36(1), 489-519.
Toet, H., Piedrafita, D. M., & Spithill, T. W. (2014). Liver fluke vaccines in ruminants: strategies, progress and future opportunities. International Journal for Parasitology, 44(12), 915-927. doi: http://dx.doi.org/10.1016/j.ijpara.2014.07.011
Toledo-Machado, C. M., Machado de Avila, R. A., NGuyen, C., Granier, C., Bueno, L. L., Carneiro, C. M., . . . Fujiwara, R. T. (2015). Immunodiagnosis of canine visceral leishmaniasis using mimotope peptides selected from phage displayed combinatorial libraries. BioMed research international, 2015.
Torres-Acosta, J., & Hoste, H. (2008). Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Ruminant Research, 77(2-3), 159-173.
Torres-Acosta, J., Molento, M., & De Gives, P. M. (2012). Research and implementation of novel approaches for the control of nematode parasites in Latin America and the Caribbean: Is there sufficient incentive for a greater extension effort? Veterinary Parasitology, 186(1-2), 132-142.
Umair, S., Bouchet, C. L. G., Knight, J. S., Pernthaner, A., & Simpson, H. V. (2017). Molecular and biochemical characterisation and recognition by the immune host of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of the abomasal nematode parasite Teladorsagia circumcincta. Experimental parasitology, 181, 40-46. doi: https://doi.org/10.1016/j.exppara.2017.07.006
Uruburu, A., Alma, V., Quiroz Acosta, L. A., & Noguera Ortega, D. A. (2017). Application of the Famacha© method in two types of goat farming in Popayán (Cauca, Colombia). Revista de Medicina Veterinaria(35), 45-52.
Valladão, G., Gallani, S., & Pilarski, F. (2015). Phytotherapy as an alternative for treating fish disease. Journal of veterinary pharmacology and therapeutics, 38(5), 417-428.
Van Wyk, J. A., & Bath, G. F. (2002). The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Veterinary research, 33(5), 509-529.
VanHoy, G., Carman, M., Habing, G., Lakritz, J., Hinds, C. A., Niehaus, A., . . . Marsh, A. E. (2018). Safety and serologic response to a Haemonchus contortus vaccine in alpacas. Veterinary Parasitology, 252, 180-186. doi: https://doi.org/10.1016/j.vetpar.2018.02.014
Vatta, A., & Lindberg, A. (2006). Managing anthelmintic resistance in small ruminant livestock of resource-poor farmers in South Africa. Journal of the South African Veterinary Association, 77(1), 2-8.
Veríssimo, C. J., Niciura, S. C. M., Alberti, A. L. L., Rodrigues, C. F. C., Barbosa, C. M. P., Chiebao, D. P., . . . Margatho, L. F. F. (2012). Multidrug and multispecies resistance in sheep flocks from São Paulo state, Brazil. Veterinary Parasitology, 187(1-2), 209-216.
Vieira, L. d. S. (2005). Endoparasitoses gastrintestinais em caprinos e ovinos. Embrapa Caprinos. Documentos.
Vieira, L. d. S., Berne, M., Cavalcante, A., & Menezes, R. (1989). Redução do número de ovos por grama de fezes (OPG) em caprinos e ovinos medicados com anti-helmínticos. EMBRAPA-CNPC. Boletim de Pesquisa.
Villa-Mancera, A., Quiroz-Romero, H., Correa, D., Ibarra, F., Reyes-Perez, M., Reyes-Vivas, H., . . . Alonso, R. (2008). Induction of immunity in sheep to Fasciola hepatica with mimotopes of cathepsin L selected from a phage display library. Parasitology, 135(12), 1437-1445.
Villa-Mancera, A., Reynoso-Palomar, A., Utrera-Quintana, F., & Carreón-Luna, L. (2014). Cathepsin L1 mimotopes with adjuvant Quil A induces a Th1/Th2 immune response and confers significant protection against Fasciola hepatica infection in goats. Parasitology research, 113(1), 243-250.
Viney, M., & Thompson, F. (2008). Two hypotheses to explain why RNA interference does not work in animal parasitic nematodes. International journal for parasitology, 38(1), 43-47.
Wagland, B., Jones, W., Hribar, L., Bendixsen, T., & Emery, D. (1992). A new simplified assay for larval migration inhibition. International journal for parasitology, 22(8), 1183-1185.
Waller, P. (2006). From discovery to development: current industry perspectives for the development of novel methods of helminth control in livestock. Veterinary Parasitology, 139(1-3), 1-14.
Waller, P., & Chandrawathani, P. (2005). Haemonchus contortus: parasite problem No. 1 from tropics-Polar Circle. Problems and prospects for control based on epidemiology. Trop Biomed, 22(2), 131-137.
Wang, C., Li, F., Zhang, Z., Yang, X., Ahmad, A. A., Li, X., . . . Hu, M. (2017). Recent research progress in China on Haemonchus contortus. Frontiers in microbiology, 8, 1509.
Wang, H., Gao, Y., Gong, Y., Chen, X., Liu, C., Zhou, X., . . . Yang, H. (2007). Identification and immunogenicity of an immunodominant mimotope of Avibacterium paragallinarum from a phage display peptide library. Veterinary Microbiology, 119(2), 231-239.
Wang, T., He, G., Yang, G., Fei, Y., Zhang, Z., Wang, C., . . . Liu, L. (2008). Cloning, expression and evaluation of the efficacy of a recombinant Baylisascaris schroederi Bs-Ag3 antigen in mice. Vaccine, 26(52), 6919-6924.
Ward, M., Lyndal-Murphy, M. & Baldock, F. 1997. Evaluation of a composite method for counting helminth eggs in cattle faeces. Veterinary Parasitology 73:181
Westers, T. (2016). Evaluating Strategies for Controlling Anthelmintic-Resistant Haemonchus contortus in Ontario Sheep Flocks.
Wilmsen, M. O., Silva, B. F., Bassetto, C. C., & Amarante, A. F. T. d. (2014). Gastrointestinal nematode infections in sheep raised in Botucatu, state of São Paulo, Brazil. Revista Brasileira de Parasitologia Veterinária, 23(3), 348-354.
Williamson, A. L., Lustigman, S., Oksov, Y., Deumic, V., Plieskatt, J., Mendez, S., . . . Loukas, A. (2006). Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infection and immunity, 74(2), 961-967.
Williamson, S. M., Storey, B., Howell, S., Harper, K. M., Kaplan, R. M., & Wolstenholme, A. J. (2011). Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Molecular and biochemical parasitology, 180(2), 99-105.
Witola, W. H., Cooks-Fagbodun, S., Ordonez, A. R., Matthews, K., Abugri, D. A., & McHugh, M. (2016). Knockdown of phosphoethanolamine transmethylation enzymes decreases viability of Haemonchus contortus. Veterinary Parasitology, 223, 1-6. doi: https://doi.org/10.1016/j.vetpar.2016.04.008
Wandra, T., Sutisna, P., Dharmawan, N., Margono, S., Sudewi, R., Suroso, T., Craig, P. & Ito, A. 2006. High prevalence of Taenia saginata taeniasis and status of Taenia solium cysticercosis in Bali, Indonesia, 2002–2004. Transactions of the Royal Soc. Tropical Medicine and Hygiene 100:346
Wardhaugh KG. 2005. Insecticidal activity of synthetic pyrethroids, organophosphates, insect growth regulators, and other livestock parasiticides: an Australian perspective. Environ Toxicol Chem 24: 789-796. doi: 10.1897/03-588.1
Wu, H.-W., Hu, X.-M., Wang, Y., Kurtis, J., Zeng, F.-J., McGarvey, S., . . . Hua, Z.-C. (2006). Protective immunity induced by phage displayed mitochondrial related peptides of Schistosoma japonicum. Acta tropica, 99(2-3), 200-207.
Yan, F., Xu, L., Liu, L., Yan, R., Song, X., & Li, X. (2010). Immunoproteomic analysis of whole proteins from male and female adult Haemonchus contortus. The Veterinary Journal, 185(2), 174-179. doi: http://dx.doi.org/10.1016/j.tvjl.2009.05.021
Yan, R., Sun, W., Song, X., Xu, L., & Li, X. (2013). Vaccination of goats with DNA vaccine encoding Dim-1 induced partial protection against Haemonchus contortus: a preliminary experimental study. Research in Veterinary science, 95(1), 189-199.
Yang, X., Qi, M., Zhang, Z., Gao, C., Wang, C., Lei, W., . . . Hu, M. (2017). Development and Evaluation of a loop-mediated isothermal amplification (lamp) assay for the detection of Haemonchus contortus in goat fecal samples. Journal of Parasitology, 103(2), 161-167.
Yasuda, K., & Nakanishi, K. (2018). Host responses to intestinal nematodes. International immunology.
Yu, L., Yu, P. S., Mui, E. Y. Y., McKelvie, J. C., Pham, T. P. T., Yap, Y
Descargas
Publicado
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.